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ABSTRACT

Consistent text-to-image (T2I) generation seeks to produce identity-preserving
images of the same subject across diverse scenes, yet it often fails due to a phe-
nomenon called identity (ID) shift. Previous methods have tackled this issue, but
typically rely on the unrealistic assumption of knowing all target scenes in advance.
This paper reveals that a key source of ID shift is the native correlation between
subject and scene context, called scene contextualization, which arises naturally as
T2I models fit the training distribution of vast natural images. We formally prove
the near-universality of this scene-ID correlation and derive theoretical bounds
on its strength. On this basis, we propose a novel, efficient, training-free prompt
embedding editing approach, called Scene De-Contextualization (SDeC), that
imposes an inversion process of T2I’s built-in scene contextualization. Specifically,
it identifies and suppresses the latent scene-ID correlation within the ID prompt’s
embedding by quantifying SVD directional stability to adaptively re-weight the cor-
responding eigenvalues. Critically, SDeC allows for per-scene use (one scene per
prompt) without requiring prior access to all target scenes. This makes it a highly
flexible and general solution well-suited to real-world applications where such
prior knowledge is often unavailable or varies over time. Experiments show that
SDeC markedly enhances identity preservation while maintaining scene diversity.

1 INTRODUCTION

Text-to-image (T2I) generation (Shi et al., 2024; Saharia et al., 2022; Ramesh et al., 2021) aims to
synthesize visually compelling and semantically faithful images from prompts. From artistic design
to personalized media production, T2I models such as GAN (Tao et al., 2022) and Stable Diffusion
(Rombach et al., 2022b) have demonstrated remarkable capability in producing novel scenes that
align closely with user intent. However, in narrative-driven visual tasks involving recurring characters
or entities, such as animation/video (Lei et al., 2025), personalized storytelling (Avrahami et al.,
2024), cinematic pre-visualization (Tao et al., 2024), and digital avatars (Wang et al., 2023), mere
alignment with scene descriptions is insufficient: The subject’s IDentity (ID) must remain consistent
across generated images (no ID shift). Against this backdrop, consistent T2I generation has recently
emerged as a focal point of growing interest (Höllein et al., 2024; Wang et al., 2024).

Methodologically, existing approaches reduce ID shift in line with the paradigm of transfer learn-
ing (Tang et al., 2024): Extracting invariance from given heterogeneous data. This requires prior
knowledge of the complete target scenes, enabling the generative model to map different scene
prompts into corresponding features (Zhou et al., 2024; Liu et al., 2025) or image pseudo labels (Avra-
hami et al., 2024; Akdemir & Yanardag, 2024) for constructing such a diversified dataset. In practice,
however, target scenes are not always available1, rendering this assumption unrealistic and limiting

∗Corresponding authors: Mao Ye and Xiatian Zhu
1In real-world projects (e.g., films, games, or story creation), the full set of final scenes, their content, and

their order are often refined and finalized over numerous iterative changes, making it impossible to know all
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Figure 1: Illustration of scene contextualization with SDXL. Left: The attire of the subject varies
with the site. Right: The subject’s clothing changes with the season.

the practical applicability of these methods. Critically, the underlying cause of ID shift with T2I
models remains largely unclear.

In this work, we consider that the scene plays a context role that would influence the characterization
of identity, called scene contextualization (Fig. 1), causing ID shift. This arises because a T2I model
is predominantly trained on natural images with a specific data distribution (e.g., caws often appear
on the green fields but not in the sea). Consequently, the generated images are constrained to satisfy
such internalized priors.

To probe the connection between scene contextualization and ID shift, we formulate a theoretical
framework, showing that the contextualization, inherently induced by the attention mechanism, is
not only the primary source of ID shift but also inevitable for pre-trained T2I models. Moreover,
we derive theoretical bounds on contextualization strength. Building on these insights, we propose
a Scene De-Contextualization (SDeC) approach, which effectively realizes the inverse process
of scene contextualization. Specifically, SDeC quantifies the directional stability of the subspace
spanned by Singular Value Decomposition (SVD) (Stewart, 1993) eigenvectors via a forward-and-
backward eigenvalue optimization. After that, the latent scene-ID correlation within the ID prompt’s
embedding is identified through eigenvalue variations and then suppressed with adaptive eigenvalue
weighting. The contextualization-mitigated ID prompt embedding is then reconstructed from the
reweighted eigenvalues for subsequent generation. It can work in a one-prompt-per-scene setting,
removing reliance on full target scenes.

Our contributions are: (1) We propose a scene contextualization perspective for ID shift with T2I
models; (2) We theoretically characterize and quantify this contextualization, leading to a novel SDeC
approach for mitigating ID shift per scene without the need for complete target scenes in advance. (3)
Extensive experiments show that SDeC can enhance identity preservation, maintain scene diversity,
and offer plug-and-play flexibility at per-scene level and across diverse tasks, e.g., integrating pose
map and personalized photo, and generative backbones such as PlayGround-v2.5, RealVisXL-V4.0,
Juggernaut-X-V10, SD3, and Flux.

2 RELATED WORK

The study of consistent T2I generation falls into two phases. The early phase focuses on personalized
T2I generation (Zhang et al., 2024), where one or a couple of reference images are given to define
the identity of interest. These methods tackle ID shift by injecting ID semantics of reference images
into a pre-trained T2I model, essentially adopting two strategies. The first leverages cross-attention
to progressively inject the information, subject to convergence toward the reference image(s) (Ye
et al., 2023). The second is a textual token creation strategy: Transforming the reference image(s)
into dedicated tokens to differentiate ID and scene. For example, DreamBooth (Ruiz et al., 2023) and
variants (Sun et al., 2025; Hsin-Ying et al., 2025) introduce a unique identifier token to represent the
ID and inject it by fine-tuning the generative model. PhotoMaker (Li et al., 2024) fuses the reference
image(s) and text embeddings to enhance ID tokens. Textual Inversion (Gal et al., 2022) and its
variants (Zeng et al., 2024; Wu et al., 2024) directly create a concept token via textual inversion.

subsequent scene contexts in advance. Efficiency dictates generating images online based on the current scene
description, without the need for repeatedly re-generating all previous scenes (avoiding exponential complexity).
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Figure 2: Example of scene contextualization with ID prompt “a photo of a dog” and scene prompt
“chasing a frisbee in a park”. Left: Correlation between tokens and attention similarity matrix shows
that scene tokens affect ID generation (visualization follows (Hertz et al., 2023)). Right: Similarity
between SVD eigenvectors of ID and scene embedding shows they share an overlapping subspace.

The recent phase moves to the more flexible reference image-free setting addressed under two
approaches. The first involves pseudo-label-based self-learning: Generating candidate images with
the entire prompt set, then filtering them with obvious ID shift using some metric (e.g., mutual
information in ORACLE (Akdemir & Yanardag, 2024) or clustering in Chosen-One (Avrahami
et al., 2024) or self-diffusion in DiffDis (Cai et al., 2025)), further retraining the generative models.
Clearly, such methods are expensive due to model retraining. More recent attempts thus emerge in
a training-free fashion. Storytelling methods (Rahman et al., 2023; Zhou et al., 2024; Tewel et al.,
2024) leverage the self-attention mechanism over generated images as an adapter, whilst the state of
the art, 1Prompt1Story (Liu et al., 2025), introduces a prompt re-structuring idea to highlight ID and
balance scene’s contribution in prompting, with extra need to couple a specific adapter. Commonly,
all the methods above assumes the availability of all the scenes which often is not valid in real
applications. Importantly, these studies fail to provide an insight on the underlying cause of ID
shift with off-the-shelf T2I models. We address these gaps by suggesting a scene contextualization
perspective along with theoretical formulation and a flexible prompt embedding editing solution.

3 SCENE CONTEXTUALIZATION

Problem Given an ID text prompt Pid and K distinct scene text prompts {Pk
sc}Kk=1, we form a set

of scenario prompts P = {Pk}Kk=1 with Pk = Pid ⊕ Pk
sc. Feeding each prompt into a T2I model G

produces K generated images {Ik}Kk=1, where Ik = G(Pk). Consistent T2I generation requires that
{Ik}Kk=1 simultaneously (1) preserve the same identity features specified by Pid, and (2) faithfully
reflect the scene semantics described in each corresponding Pk.

Interaction between ID and scene The attention mechanism is the key structure in Transformer
based T2I models. Denote Z ∈ RN×d as the set of N input token features of dimension d, the
self-attention projections are: K = ZWK , V = ZWV , Q = ZWQ. For any query q ∈ Q, the
attention output is computed as:

O(q) = α⊤V with α = softmax
((

qK⊤)/√dk

)
. (1)

where dk denotes the feature dimension with WK . In the prompt embedding space, this attention
operation offers an opportunity for scene tokens to inject its context information into ID tokens,
potentially leading to ID shift. We name this scene contextualization.

For intuitive understanding, we visualize the correlation between scene tokens and ID tokens by their
cross-attention similarity matrix, where each row corresponds to α values. As shown in images #
7∼10 of Fig. 2-Left, the bright regions (green/yellow) within the subject (dog) clearly indicate that
scene tokens affect the generation of this dog.

3.1 THEOREM BEHIND SCENE CONTEXTUALIZATION

Attention operations are typically executed in a chain-like manner for T2I models. For simplicity, we
analyze the first attention block in generative models, without loss of generality.
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Theorem 1 Let Hid,Hsc ⊂ Rd be the identity/scene semantic subspaces with ideal semantic sepa-
ration: Hid ∩Hsc = ∅; Zid ⊆ Hid and Zk

sc ⊆ Hsc be the prompt-embedding matrix of Pid and Pk
sc;

the prompt-embedding matrix be partitioned by semantics Z =
[
Zid;Zk

sc

]
∈ Rn×d. For any query

qid associated with the identity, its attention output can be specified to

O(qid) = α⊤(ZWV ) = α⊤
id (ZidWV ) + α⊤

sc

(
Zk

scWV

)
, (2)

where the attention weights by token index α = [αid, αsc] conforming to the row split of Z . Let Πid

be the orthogonal projector onto Hid. The projection of O(qid) onto the identity subspace Hid is

Πid

[
O(qid)

]
= Πid

[
α⊤
id(ZidWV )

]︸ ︷︷ ︸
id term: Tid

+ Πid

[
α⊤
sc(Zk

scWV )
]︸ ︷︷ ︸

scene term: Tsc

. (3)

Assume Πid ◦WV

∣∣
Hsc

denotes an operation where an input from subspace Hsc is first transformed by
WV and then projected onto subspace Hid. If the conditions, (A) αsc ̸= 0 and (B) Πid ◦WV

∣∣
Hsc

̸= 0,
hold, then the scene term in Eq. (3) is nonzero: Tsc ̸= 0.

Theorem 1 suggests that even if Hid∩Hsc = ∅, the attention could still cause scene contextualization.
The two conditions are almost always satisfied with T2I models. Condition (A) is often met for
two factors. (i) Keys from scene tokens and queries from ID tokens are rarely strictly orthogonal or
sufficiently separated; so the softmax attention weights are unlikely to be exactly zero, leaving scene
tokens with non-negligible attention mass. (ii) No enforcement on separating between scene and
identity tokens during training, lead scene-to-ID attention positive. For condition (B), it is equivalent
to non-block-diagonality of WV w.r.t. the decomposition Hid ⊕Hscene: No scene vector is mapped
with a nonzero component in Hid — again this condition is not enforced in training.

Theorem 1 assumes an idealized condition of Hid ∩Hsc = ∅. In practice, ID and scene subspaces
often exhibit partial overlap. To assess this, we apply SVD to Zid and Zk

sc and compute the similarity
between their corresponding eigenvectors. As seen in Fig. 2-Right, the high regions in the similarity
matrix reveal nontrivial correlations between Zid and Zk

sc across certain dimensions. Relaxing
the disjoint-subspace assumption to this correlated case, we show that scene contextualization still
persists below.

Corollary 1 Assume that Hid and Hsc have a nontrivial intersection: H∩ := Hid∩Hsc with k∩ :=
dim(H∩) > 0 where dim(·) means space dimensions. If αsc ̸= 0, then for a generic linear mapping
WV , which excludes measure-zero degenerate cases, Tsc ̸= 0 hold.

The degenerate case above refers to the rare weight setting where WV maps the scene subspace Hsc

exactly onto a subspace orthogonal to Hid. Such cases form a measure-zero set in the parameter
space. With random initialization and continuous optimization, the probability of encountering them
is negligible. For a typical WV , this blocking effect does not arise. Moreover, unlike the idealized
assumptions in Theorem 1, in practice k∩ > 0, meaning scene tokens always receive some attention.
This makes contextualization both easier and stronger, even when WV only weakly couples Hsc and
Hid. Please see the proof in Appendix-B.

Combining Theorem 1 and Corollary 1 yields an insight that, irrespective of whether Hid and Hsc

overlap, the scene-to-ID projection is generically nonzero, i.e., scene contextualization occurs firmly.

3.2 BOUNDING THE STRENGTH OF CONTEXTUALIZATION

In this section, we derive a bound on contextualization strength, uncovering the key variables that
govern its intensity. Theoretically, we characterize the scene contextualization to Tsc (see Theorem 1),
thereby its spectral norm

∥∥Tsc

∥∥
2

can be a measurement of strength.
∥∥Tsc

∥∥
2

can be bounded as below
(refer to the proof in Appendix-C):

Theorem 2 Let P∩ be the orthogonal projector onto H∩; Πsc be the orthogonal projector onto
Hsc; P⊥

∩ := Πsc − P∩ be the projector onto the orthogonal complement within Hsc. Define
R∩ := Zk

scP∩, R⊥ := Zk
scP

⊥
∩ , T∩ := ΠidWV P∩, T⊥ := P⊥

∩ WV Πid, and ϵ := ∥α⊤
sc∥2. The

contextualization strength
∥∥Tsc

∥∥
2

is bounded as

0 ≤ ∥Tsc∥2 ≤ ϵ · ∥R∩∥2 · ∥T∩∥F + ϵ · ∥R⊥∥2 · ∥T⊥∥F . (4)
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Figure 3: Overview of SDeC. A text prompt Pk = Pid ⊕ Pk
sc is encoded into prompt embeddings

[Zo
id;Zk

sc] where o means “original”. SDeC mitigates scene contextualization by (a) identifying
and (b) suppressing latent scene-ID correlation in Zo

id (QDV: Quantifying Directional influence
Variations). The refined ID embedding Z∗

id is then concatenated with Zk
sc for subsequent generation.

In Theorem 2, Πid is formally a subspace operator. In practice, it is often spanned or approximately
defined by the ID embedding Zid itself. Editing Zid is thus equivalent to adjusting the orientation
of the subspace, thereby modifying Πid. Following this, we derive a corollary to further specify the
upper bound from the ID perspective (see the proof in Appendix-D).

Corollary 2 Hid is the subspace spanned by the ID embedding Zid; U is an orthonormal basis
of Hid, i.e., U = orth(Zid), where orth(·) specifies an orthogonalization operation. Writing the
projector onto the ID subspace as Πid = UU⊤, we have

0 ≤ ∥Tsc∥2 ≤ ϵ · ∥R∩∥2 · ∥U⊤WV P∩∥F︸ ︷︷ ︸
σ∩

+ ϵ · ∥R⊥∥2 · ∥W⊤
V P⊥

∩ U∥F︸ ︷︷ ︸
σ⊥

, (5)

In Corollary 2, σ∩ measures the energy shared between ID (U ) and scene (Zk
sc) subspaces, while σ⊥

denotes the energy of ID projected into the scene-specific subspace. We consider that the majority of
scene-ID interaction takes place via σ∩, whilst σ⊥ allows for holistic coherence. Thus, we only need
to minimize σ∩. This decomposition further reveals a balance between lowering scene–ID interaction
and maintaining coherence, indicating an inherent disentanglement–coherence trade-off.

4 SCENE DE-CONTEXTUALIZATION

Overview Grounding on the insights from Corollary 2, we propose the SDeC framework to achieve
de-contextualization, including (1) estimating P∩ and (2) driving σ∩ → 0. SDeC’s idea is to quantify
the extent to which each direction is influenced by contextualization and then selectively reinforce
those that are less affected. Thus, the original ID embedding is edited. Here, the directions that are
strongly affected are referred to as the latent scene–ID correlation subspace.

Concretely, we approximate P∩ by identifying the latent scene-ID correlation subspace in Zid

(Fig. 3(a)), exploiting a learning process. We then suppress this subspace (Fig. 3(b)) to reach σ∩ → 0.
For clarity, we hereafter denote Zid to Zo

id and in-training ID embedding is denoted as Z̃id.

Identifying latent scene-ID correlation subspace in Zo
id We first achieve the directional correla-

tion measurement via an “forward-and-backward” optimization (Fig. 3 (a)): First pulling Z̃id closer
to the scene Zk

sc (forward), followed by restoring back to its original position Zo
id (backward). We

start with solving Zo
id = Uo

id Λ
o
idV

o⊤
id by SVD. Let Z̃id = Uo

id ΛidV
o⊤
id with Λid initiated as Λo

id; We
formulate a two-phase optimization problem:

Λ∗ = min
Λid

L(Z̃id,Zo
id,Zk

sc) = ∥Uo
id ΛidV

o⊤
id −Zk

sc∥2 + β ∥Uo
id ΛidV

o⊤
id −Zo

id∥2,

β = 0 when iter ≤ M, and β ̸= 0 when iter > M,
(6)
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where iter denotes the training iteration index; M denotes the length of the first training phase,
correspondingly, iterations 0 ∼ M correspond to the forward process, while the remaining iterations
constitute the backward process.

In the two-phase optimization defined in Eq. (6), the forward phase identifies the directions in Zid

that align with Zk
sc, capturing their shared representations. However, some of these directions may

also be essential for representing Zid itself. To mitigate potential semantic degradation in Zid, we
introduce a backward phase that progressively recovers these ID-associated components.

After evaluating the directional correlations, we further quantify their strength. In the SVD view,
the directions, whose eigenvalues remain nearly unchanged (resistant to both pull and restoration),
correspond to robust directions against contextualization. In contrast, those with large variations are
the latent scene-ID correlation subspace, which theoretically corresponds to the P∩. In this context,
we use absolute spectral excursion to quantify the stability in different directions. Assume Λ∗ and Λo

id

share the same spectral structure (diagonal with ordered singular values): Λ(·) = diag(λ
(·)
1 , . . . , λ

(·)
r )

with λ
(·)
1 ≥ · · · ≥ λ

(·)
r ≥ 0 and r = rank(Zo

id). The directional correlation of Zo
id can be formulated

by Eq. (7) where vi stands for the correlation strength of the i-th direction.

Λ∆ = |Λ∗ − Λo
id| = diag(v1, . . . , vi, . . . , vr) with vi = |λ∗

i − λo
i |. (7)

De-contextualization by suppressing latent scene-ID correlation subspace in Zo
id We achieve

this through robust subspace filtering, which involves eigenvalue modulation, denoted by m(·, ·),
followed by reconstructing the ID prompt embedding using the modulated eigenvalues. This method
features (1) relative enhancement on the robust subspace, and (2) soft direction selection without
threshold. Let Z∗

id be the refined ID prompt embedding. The filtering is expressed as

Z∗
id = Uo

id (ΛωΛ
o
id)V

o⊤
id with Λω = m(Λ∆,Ω) = 1 + Ω

(
Λ∆ −∆min

∆max −∆min

)
, (8)

where ∆max and ∆min are the maximum and minimum entries of Λ∆, respectively, and the hyper-
parameter Ω ≥ 1 controls the weighting strength. In Eq. (8), the weighting values Λω ∈ [1, 1 + Ω]
are derived from normalized directional influence. Setting Ω ≥ 1 ensures that the robust subspace is
emphasized while avoiding semantic loss in the shared subspace.

After filtering, we edit the original prompt embedding [Zo
id;Zk

sc] to Zk∗ = [Z∗
id;Zk

sc]. We feed Zk∗

into the T2I model to produce the final image.

5 EXPERIMENTS

Benchmark Our evaluation uses the ConsiStory+ (Liu et al., 2025), extending the ConsiStory
dataset (Tewel et al., 2024) to 192 prompt sets, generating 1292 images with a wider range of subjects,
descriptions, and styles. The scene includes all contextual factors: not only environmental attributes
(e.g., lighting, style, background elements) but also actions, behaviors, or temporary states associated
with the subject in that specific image.

Evaluation metrics To assess ID consistency, we employ two metrics: (1) CLIP-I (Hessel et al.,
2021), computed as the cosine distance between image embeddings, and (2) DreamSim-F (Fu et al.,
2023), better aligned with human judgment of visual similarity closely. As DreamSim, we remove the
background using CarveKit (Selin, 2023) and fill random noise, ensuring that similarity measurement
focus solely on ID content.

To evaluate the entire scenario (ID + scene), we adopt CLIP-T, the average CLIPScore (Hessel
et al., 2021) between each generated image and its corresponding prompt. Note, this metric cannot
measure the undesired scene mixture effect (see Fig. 7-Middle in Appendix-F). To address this,
we introduce a new metric, DreamSim-B, specifically designed to quantify inter-scene interference,
in the spirit of DreamSim-F, based on foreground masking instead.

Competitors We consider two types of competitors. The first is baseline T2I models, including
SD1.5 (Rombach et al., 2022a) and SDXL (Podell et al., 2023). The second includes six state-of-the-
art consistent T2I methods: BLIP-Diffusion (Li et al., 2023), Textual Inversion (Gal et al., 2022),
PhotoMaker (Li et al., 2024), ConsiStory (Tewel et al., 2024), StoryDiffusion (Zhou et al., 2024),
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Table 1: Quantitative comparison. The best and second-best results are marked in bold and underlined,
respectively. PE: Prompt embedding Editing; POT: Prompt Operation Time (per image); GenT:
Generation Time (per image); BL: BaseLine.

Method Base
model PE

ID metrics Scenario metrics Infer. time↓ (s) VRAM↓
(GB) Steps

DreamSim-F↓ CLIP-I↑ DreamSim-B↑ CLIP-T↑ POT GenT

B
L – SD1.5 ✗ 0.4118 0.8071 0.4673 0.8324 0 2 3.18 50

– SDXL ✗ 0.2778 0.8558 0.3861 0.8865 0 9 10.72 50

Tr
ai

ni
ng BLIP-Diffusion SD1.5 ✗ 0.2851 0.8522 0.3957 0.8187 0 1 3.54 26

Textual Inversion SDXL ✗ 0.3066 0.8437 0.3919 0.8557 0 10 14.00 40
PhotoMaker SDXL ✗ 0.2808 0.8545 0.3957 0.8812 0 9 9.74 50

Tr
ai

ni
ng

-F
re

e

ConsiStory SDXL ✗ 0.2729 0.8604 0.4207 0.8942 0 27 15.58 50
StoryDiffusion SDXL ✗ 0.3197 0.8502 0.4214 0.8578 0 24 38.44 50
1P1S SDXL ✗ 0.2238 0.8798 0.2955 0.8883 0.10 22 13.10 50
1P1S w/o IPCA SDXL ✗ 0.2682 0.8617 0.3338 0.8637 0.10 19 10.74 50
SDeC SDXL ✓ 0.2589 0.8655 0.3675 0.8946 0.61 15 12.14 50
SDeC+ConsiStory SDXL ✓ 0.2542 0.8744 0.4155 0.8967 0.67 27 15.56 50

and 1Prompt1Story (1P1S) (Liu et al., 2025). The first three are training based, vs training free for
the rest and SDeC. For more extensive test, we introduce (1) 1P1S w/o IPCA, with the attention
module IPCA removed to focus on its prompt embedding editing; and (2) SDeC+ConsiStory, to test
the complementary effect of our method with existing adapter based method ConsiStory. We exclude
IP-Adapter (Ye et al., 2023) from comparison, as its generated characters are homogeneous in pose
and layout, with little ability to follow the scene description instruction. The same setting is applied
to all compared methods. (see Appendix-E.2).

5.1 RESULTS ANALYSIS

Quantitative analysis We draw these observations from Tab. 1: (1) For training-free methods, 1P1S
delivers the best result in the ID metrics, whilst suffering serious inter-scene interference (worst
DreamSim-B score, also see Fig. 7 in Appendix-F for the typical qualitative evidence), largely
unacceptable for consistent T2I generation. In contrast, our SDeC strikes the best balance between
ID consistency and scene diversity. (2) Without the attention IPCA, 1P1S is outperformed by SDeC
across all metrics. That indicates that our prompt embedding editing is superior, even without the
need for all target scenes in advance. (3) ConsiStory lags behind SDeC in ID metrics, but excels in
scene background. (4) SDeC is well complementary with ConsiStory to further push the performance,
as they address distinct aspects. (5) Interestingly, training-based methods are even outpaced by most
tree-free counterparts in ID consistency, with extra disadvantage in efficiency. (6) In terms of memory
and inference time, SDeC introduces negligible overhead on top. The further discussion is provided
in Appendix H.1.

Table 2: User study results. Criteria: Best balance in ID
consistency, scene diversity, and prompt alignment.

Method PhotoMaker ConsiStory StoryDiffusion 1P1S SDeC

Wins↑ 8.17% 20.83% 13.33% 15.00% 42.67%

User study To complement those eval-
uation metrics, we further conduct a user
study. We compare with top alternatives:
PhotoMaker, ConsiStory, StoryDiffusion,
and 1P1S. Specifically, the test images
were generated by 30 random prompt sets
from ConsiStory+. A total of 20 vol-
unteers were invited to pick which im-
age best balances among ID consistency,
scene diversity, and prompt alignment. We measure the performance using the percentage of wins.
Tab. 2 shows that SDeC best matches human preference.

Qualitative analysis For visual comparison, we show a couple of examples in Fig. 4. For the robotic
elephant case, ConsiStory presents varying robotic styles, whilst 1P1S suffers from scene interference.
For the cup of hot chocolate case, the ID shift issue becomes more acute with prior methods. Instead,
SDeC still does a favored job. More qualitative results are provided in Appendix-G.
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Figure 4: Qualitative results. CS: ConsiStory.

5.2 FURTHER ANALYSIS

Ablation study In SDeC, there are two key designs: (1) Estimate P∩ in a soft manner by a learning
process, and (2) employ the absolute excursion of SVD eigenvalues to identify the latent scene-ID
correlation subspace. To isolate their effect, we tailor two variations of SDeC: (1) SDeC w/o soft-
estimation, where we operate the shared subspace in a hard way: By constructing a correlation matrix
to estimate P∩ (its implementation details are provided in Appendix-E.3), and (2) SDeC w/o
abs-excursion where the corresponding eigenvalue normalizes the eigenvalue variation.

Tab. 3 presents the ablation study results. SDeC ranks first in terms of ID metrics and scenario
alignment (see CLIP-T), indicating that the two designs positively affect the final performance. These
results are understandable. In reality, the relationship between ID and scene subspaces is complicated.
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Figure 5: Qualitative comparison results of SDeC and its two variations SDeC w/o soft-estimation,
SDeC w/o abs-excursion. The results of SDeC significantly outperform the variant methods. More-
over, SDeC w/o abs-excursion disregards the original importance of the SVD eigen-directions,
causing greater semantics loss than both SDeC w/o soft-estimation and SDeC, and consequently
ranks last in generation quality.

Thus, explicitly constructing P∩ is nearly infeasible. A tractable approach is by approximation
using high-dimensional matrix decomposition, which, however, is numerically unstable under limited
samples (Yang et al., 2023). Accordingly, SDeC w/o soft-estimation suffers from a performance
decrease. As for SDeC w/o abs-excursion, its relative excursion strategy enforces the stability
quantifying on a unified scale, disregarding the intrinsic importance of each eigen-direction.

Table 3: Ablation study. Best results are in bold.

Method ID metrics Scene metrics

DreamSim-F↓ CLIP-I↑ DreamSim-B↑ CLIP-T↑

SDeC w/o soft-estimation 0.3351 0.8320 0.4254 0.8755
SDeC w/o abs-excursion 0.3576 0.8190 0.4440 0.8569
SDeC 0.2589 0.8655 0.3675 0.8946

Additionally, relative to SDeC, the P∩ es-
timated by these two variant approaches
is inherently less reliable. When ap-
plied to contextualization carrier suppres-
sion, it introduces additional and unpre-
dictable interference into the ID embed-
ding. Through the coupling effect of at-
tention, this interference propagates into
the scene generation process, ultimately
amplifying discrepancies across scenes.
This is why the variant approaches have a higher DreamSim-B score than SDeC.

As a supplement to Tab. 3, in Fig. 5, we present a qualitative comparison between methods SDeC
w/o soft-estimation, SDeC w/o abs-excursion, and SDeC. It is seen that the qualitative results are
consistent with the data in Tab. 3. In particular, method SDeC w/o abs-excursion performs worse
than method SDeC w/o soft-estimation, which supports our previous discussion. Specifically, SDeC
w/o abs-excursion disregards the inherent importance of different SVD eigen directions, resulting
in greater semantic loss and severe subject deformation (for example, see image #2 in Fig. 5-
Right). In contrast, SDeC w/o soft-estimation, which employs a matrix transformation approach, just
suffers from less accurate in identifying latent overlapping subspaces, but remain the key semantic
information. Thus, it achieves better ID preservation than SDeC w/o abs-excursion.

Validation of scene contextualization control Our validation is based on a scenario with ID
prompt: "A mischievous fantasy depiction of A cunning goblin with sharp features" and scene
prompt: "trading stolen trinkets at a market" where "trinkets" is sliced to "trin" and "kets" by text-
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Gen. image trading stolen trin kets at a market

A mischievous fantasy depiction of a cunning goblin with sharp features trading stolen trinkets at a market

Figure 6: Validation of scene contextualization control. Top: PCA-based analysis where the image
pairs blocked by the green-highlighted box have noticeable discrepancy. Bottom: Correlation
between scene token embedding and attention similarity matrix.

encoder. Employing SVD to the original ID prompt embedding, we have Zo
id = Uo

idΛ
o
idV

o⊤
id . For the

refined one Z∗
id obtained by our SDeC, the weighting coefficients is Λω (see Eq.(8)).

The key to SDeC is that the detected scene-ID correlation directions can modulate identity traits. To
verify this, we apply PCA-based suppression to Zo

id using criteria Λo
id and Λω , respectively. Sweeping

the cumulative energy threshold in 10% increments yields the ten image pairs shown in Fig. 6-Top. In
pairs #6–7, the subject produced by SDeC noticeably diverges from its SDXL counterpart, indicating
that SDeC indeed identifies overlapping directions that drive identity adjustment.

Additionally, our prompt editing design operates through the attention module. Accordingly, the most
direct evidence of contextualization control is to examine the correlation between token embeddings
and the attention similarity matrix. Fig. 6-Bottom visualizes it as Z∗

id drives the generation. With
bright green denoting high correlation, we observe that, except for image #7, SDeC yields darker
regions with more pronounced subject silhouettes than SDXL. These observations suggest that SDeC
reduces the scene contextualization and provides an intuitive explanation for SDeC’s effectiveness.
The more model analyses are provided in Appendix-I.

Analysis of a proprietary commercial product Google’s latest flagship T2I product, Nano Ba-
nana (Google & DeepMind, 2025), has demonstrated impressive ID-preservation ability. While
we cannot integrate our method, we design an interesting test to inspect how this system might
work, which may reveal additional insights for future work. The results and speculative analysis are
presented in Appendix-J.

6 CONCLUSION

In this paper, we identify scene contextualization as a key source of ID shift in T2I generation
and conduct a formal investigation. Our analysis shows that this contextualization is an inevitable
attention-induced phenomenon and the primary driver of ID shift in T2I models. By deriving
theoretical bounds on its strength, we provide a foundation for mitigating this effect. Building on
these insights, we introduce SDeC, a training-free embedding editing method that suppresses latent
scene-ID correlation subspace through eigenvalue stability analysis, yielding refined ID embeddings
for more consistent generation. Extensive experiments validate both the effectiveness and generality
of the proposed approach. The limitations and future work are elaborated in Appendix-K.
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A PROOF OF THEOREM 1

Restatement of Theorem 1 Let Hid,Hsc ⊂ Rd be the identity/scene semantic subspaces, which
have ideal semantic separation: Hid ∩ Hsc = ∅. Let Zid ⊆ Hid and Zk

sc ⊆ Hsc be the prompt-
embedding matrix of Pid and Pk

sc, respectively; the prompt-embedding matrix be partitioned by
semantics Z =

[
Zid;Zk

sc

]
∈ Rn×d. For any query qid associated with the identity, its attention

output can be specified to

O(qid) = α⊤(ZWV ) = α⊤
id (ZidWV ) + α⊤

sc

(
Zk

scWV

)
, (9)

where the attention weights by token index α = [αid, αsc] conforming to the row split of Z. Let Πid

be the orthogonal projector onto Hid. The projection of O(qid) onto the identity subspace Hid is

Πid

[
O(qid)

]
= Πid

[
α⊤
id(Zk

idWV )
]︸ ︷︷ ︸

id term: Tid

+ Πid

[
α⊤
sc(Zk

scWV )
]︸ ︷︷ ︸

scene term: Tsc

. (10)

Assume Πid ◦WV

∣∣
Hsc

denotes an operation where an input from subspace Hsc is first transformed
by WV and then projected onto subspace Hid. If condition (A) αsc ̸= 0 and (B) Πid ◦WV

∣∣
Hsc

̸= 0

hold, then the scene term in Eq. (10)) is nonzero. That is, Tsc ̸= 0.

Proof 1 To obtain the result presented above, we need to firstly prove (1) Osc(qid) = α⊤
sc

(
Zk

scWV

)
̸=

0 (the second term in Eq. (9)), and (2) its projection onto space Hsc is non-zero.

(1) Proving Osc(qid) ̸= 0. Due to αsc ̸= 0, Osc is a non-trivial linear combination of the rows of
ZscWV ; hence, it is nonzero unless ZscWV vanishes row-wise, which is not the case in functioning
models. This establishes that a nonzero scene term Osc is present in Att(qid).

(2) Proving the projection of Osc(qid) onto Hid is non-zero. From The condition ΠHid
◦

WV

∣∣
Hsc

= 0, for any scene vector z(s) ∈ Hsc, we have ΠHid

(
WV z

(s)
)
̸= 0. Then, the scene

contribution has a nonzero component along Hid. Because α is a softmax, all its entries are
non-negative and at least one scene weight is strictly positive (since αsc ̸= 0). Therefore,

Tsc = Πid

[
α⊤
sc(ZscWV )

]
=

∑
j∈scene

αj Πid

[
(z

(s)
j )⊤WV

]
̸= 0. (11)

B PROOF OF COROLLARY 1

Restatement of Corollary 1 Assume Hid and Hsc have a nontrivial intersection: H∩ := Hid ∩
Hsc, k∩ := dim(H∩) > 0 where dim(·) means space dimensions. If αsc ̸= 0, then for a generic
linear mapping WV , which excludes measure-zero degenerate cases, Tsc ̸= 0 hold.

Proof 2 Pick any nonzero u ∈ H∩. Since u ∈ Hsc and Zsc ⊇ Hsc, there exists a scene row z(s)

such that z(s) = βu+ z⊥ with β ̸= 0, z⊥ ⊥ Hid. For any WV , we further have

Πid(WV z
(s)) = βΠid(WV u) + Πid(WV z

⊥). (12)

Consider the set U := {WV : Πid(WV u) = 0 }, which is a proper linear subspace of Rd×d and
hence has Lebesgue measure zero. Therefore, for almost every WV , we have Πid(WV u) ̸= 0,
implying Πid(WV z

(s)) ̸= 0. Since αsc ̸= 0 has at least one strictly positive entry,

Tsc = Πid

[
α⊤
sc(ZscWV )

]
=

∑
j∈scene

αj Πid

(
WV z

(s)
j

)
̸= 0. (13)
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C PROOF OF THEOREM 2

Restatement of Theorem 2 Let P∩ be the orthogonal projector onto H∩; Πsc be the orthogonal
projector onto Hsc; P⊥

∩ := Πsc − P∩ be the projector onto the orthogonal complement within Hsc.
Define R∩ := Zk

scP∩, R⊥ := Zk
scP

⊥
∩ , T∩ := ΠidWV P∩, T⊥ := P⊥

∩ WV Πid, and ϵ := ∥α⊤
sc∥2. For

contextualization strength
∥∥Tsc

∥∥
2
, it is bounded by

0 ≤ ∥Tsc∥2 ≤ ϵ · ∥R∩∥2 · ∥T∩∥F + ϵ · ∥R⊥∥2 · ∥T⊥∥F . (14)

Proof 3 Since col(Zk
sc) ⊆ Hsc, for any vector x, Zk

scx = Zk
scΠscx = Zk

sc(P∩ + P⊥
∩ )x. Thus

Tsc = Πid

[
α⊤
sc(Zk

scWV )
]

= α⊤
sc(Zk

scWV Πid)

= α⊤
sc((Zk

sc(P∩ + P⊥
∩ ))WV Πid)

= α⊤
scZk

scP∩WV Πid + α⊤
scZk

scP
⊥
∩ WV Πid.

(15)

Based on R∩ := Zk
scP∩, R⊥ := Zk

scP
⊥
∩ , T∩ := ΠidWV P∩, T⊥ := P⊥

∩ WV Πid, Eq. (15) becomes

Tsc = α⊤
scZk

scP∩P∩WV Πid + α⊤
scZk

scP
⊥
∩ P⊥

∩ WV Πid

= α⊤
scR∩T∩ + α⊤

scR⊥T⊥.
(16)

Applying the triangle inequality (||a+ b|| ≤ ||a||+ ||b||) to Eq. (16), we have the following inequality.

∥Tsc∥2 ≤ ∥α⊤
sc R∩ T∩∥2 + ∥α⊤

sc R⊥ T⊥∥2. (17)

For any row vector x⊤ and matrix A, ∥x⊤A∥2 ≤ ∥x∥2 ∥A∥F (column-wise Cauchy–Schwarz). Also
∥Y Z∥2 ≤ ∥Y ∥2∥Z∥2 (submultiplicativity). Apply these to each term in Eq. (17) to obtain

∥α⊤
sc R∩ T∩∥2 ≤ ∥α⊤

sc∥2 · ∥R∩∥2 · ∥T∩∥F = ϵ · ∥R∩∥2 · ∥T∩∥F ,
∥α⊤

sc R⊥ T⊥∥2 ≤ ∥α⊤
sc∥2 · ∥R⊥∥2 · ∥T⊥∥F = ϵ · ∥R⊥∥2 · ∥T⊥∥F .

(18)

Summing the two inequalities above gives the upper bound claim.

D PROOF OF COROLLARY 2

Restatement of Corollary 2 Hid is the subspace spanned by the ID embedding Zid; U is an or-
thonormal basis of Hid, i.e., U = orth(Zid), where orth(·) means performing orthogonalization on
the input. Writing the projector onto the ID subspace as Πid = UU⊤, we have

0 ≤ ∥Tsc∥2 ≤ ϵ · ∥R∩∥2 · ∥U⊤WV P∩∥F + ϵ · ∥R⊥∥2 · ∥W⊤
V P⊥

∩ U∥F . (19)

Proof 4 Since Πid = UU⊤, the term ∥T∩∥F and ∥T⊥∥F in Theorem 2 can be

∥ΠidWV P∩∥2F = ∥UU⊤WV P∩∥2F
∥W⊤

V P⊥
∩ Πid∥2F = ∥W⊤

V P⊥
∩ UU⊤∥2F .

(20)

We first prove ∥UU⊤WV P∩∥2F = ∥U⊤WV P∩∥2F . Expanding the left-hand side of it, we have

∥UU⊤WV P∩∥2F = tr
(
(UU⊤WV P∩)

⊤(UU⊤WV P∩)
)

= tr
(
P⊤
∩ W⊤

V UU⊤UU⊤WV P∩
)
.

(21)

Since UU⊤ is an orthogonal projector, we have UU⊤UU⊤ = UU⊤; then applying the cyclic
property of the trace, we obtain:

∥UU⊤WV P∩∥2F = tr
(
P⊤
∩ W⊤

V UU⊤WV P∩
)

= tr
(
U⊤WV P∩P

⊤
∩ W⊤

V U
)
.

(22)
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Table 4: Code link of the comparison methods.

Method Code link

BLIP-Diffusion (Li et al., 2023) https://github.com/salesforce/LAVIS/tree/main/projects/blip-diffusion

Textual Inversion (Gal et al., 2022) https://github.com/oss-roettger/XL-Textual-Inversion
PhotoMaker (Li et al., 2024) https://github.com/TencentARC/PhotoMaker

ConsiStory (Tewel et al., 2024) https://github.com/NVlabs/consistory

StoryDiffusion (Zhou et al., 2024) https://github.com/HVision-NKU/StoryDiffusion

1Prompt1Story (Liu et al., 2025) https://github.com/byliutao/1Prompt1Story

Because P∩ is itself an orthogonal projector, we have P 2
∩ = P∩ and P⊤

∩ = P∩. Therefore,

∥UU⊤WV P∩∥2F = tr
(
(U⊤WV P∩)(U

⊤WV P∩)
⊤)

= ∥U⊤WV P∩∥2F .
(23)

In the similar way, we have ∥W⊤
V P⊥

∩ UU⊤∥2F = ∥W⊤
V P⊥

∩ U∥F . Substituting it and Eq. (23) to the
upper bound from Theorem 2, we finish the proof.

E EXPERIMENTAL DETAILS

E.1 PARAMETERS SETTING

SDeC involves three parameters: Trade-off parameter β and switching constant M in Eq. (6)
and weighting strength Ω in Eq. (8). We fix (β, M) = (10, 20) in all experiments. For UNet-
based (Ronneberger et al., 2015) generative models, we set Ω = 1, whereas MMDiT-based (Esser
et al., 2024) models use a larger value, Ω = 10. A detailed description of the parameter-setting
guidelines is provided in Parameter Analysis section (Appendix H.2).

E.2 MODEL SETTING

We achieve ID-preserving image generation by editing the ID prompt embeddings during the inference
phase. There is no extra training or optimization imposed on the generative models. In practice, we
adopt Stable Diffusion (SD) V1.52 as the backbone model of BLIP-Diffusion, while the pre-trained
Stable Diffusion XL (SDXL)3 is selected as the backbone model for our SDeC and the rest of the
comparison approaches.

The comparison methods are implemented using the unofficial or official codes from GitHub website,
whose details are listed in Tab. 4. The computation platform adopts the same configuration as SDeC:
NVIDIA RTX A6000 GPU with 48GB VRAM.

In addition, among these comparisons, BLIP-Diffusion (Li et al., 2023) and PhotoMaker (Li et al.,
2024) rely on an additional reference image. We produce this reference by feeding the identity prompt
into their respective base models, the same as 1Prompt1Story (1P1S) (Liu et al., 2025).

E.3 IMPLEMENTATION DETAILS OF METHOD SDEC W/O SOFT-ESTIMATION

The goal of SDeC w/o soft-estimation is to find the overlapping subspace directions between Zid
and Zsc, i.e., directions corresponding to a principal angle θ ≈ 0. We achieve this by:

We first perform SVD on both Zid and Zsc to obtain their orthonormal bases:

Zid = UidΛidV
⊤

id , Zsc = UscΛscV
⊤

sc . (24)

Then, the column subspaces are constructed as

Bid := Vid[:, 1 : rid], Bsc := Vsc[:, 1 : rsc], (25)

2https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
3https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
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Figure 7: Demonstration of scene-level interference caused by the prompt integration strategy in
1Prompt1Story (Liu et al., 2025). The visual interference elements are: Top: The bent tree in images
#3∼6, Middle: The oak tree in all images, and Bottom: The cake in images #1∼5.

where rid and rsc denote the respective subspace ranks.

Subsequently, based on Bid and Bsc, we can compute their correlation matrix as

M = B⊤
id Bsc ∈ Rrid×rsc . (26)

By performing SVD, we have M = UΛV ⊤, where the singular values σi = cos θi correspond to
the cosines of the principal angles θi. We select σi ≥ τ (with τ typically chosen 0.98), where the
associated singular vectors indicate the intersection directions.

Thus, the explicit basis for the intersection subspace in the original space can be written as B∩ =
BidU(:,I), where I = {i : σi ≥ τ}. Applying an additional QR orthonormalization on B∩ yields
the final intersection basis B̂∩. The projection operator onto the intersection subspace then can be
expressed by P∩ ≈ B̂∩B̂

⊤
∩ . Corresponding to the proposed scheme in SDeC, we equivalently detect

the latent scene–ID correlation subspace. After that, we can realize suppressing this correlation
subspace by employing Z∗

id = Zid(I − P∩) directly.

F DEMONSTRATION OF SCENE-LEVEL INTERFERENCE IN 1PROMPT1STORY

The previous 1Prompt1Story method (Liu et al., 2025) proposed a prompt strategy that merges
the ID prompt with all scene prompts into a single input, followed by calibration across different
scenes using SVD-based scene prompt selection. Subsequently, all images are generated from this
consolidated prompt with a fixed ID component, thereby reducing ID shift. With the aid of the
proposed attention module, serving as an adapter, this strategy further enhances identity preservation.

However, the proposed prompt strategy in 1Prompt1Story inevitably introduces pronounced scene-
level interference. For an intuitive view, we demonstrate this phenomenon from 1Prompt1Story’s
results on the ConsiStory+ benchmark. As shown in Fig. 7, in the Top, images #1 and #2 both exhibit

17



Published as a conference paper at ICLR 2026

“A watercolor illustration of A woman with a slender figure, straight red hair, and freckles across the nose ”

“holding a box” “ in a snowy forest” “singing at a 
concert”

“attending a 
holiday party”

“baking a cake” “dressed in a formal 
evening gown”

SD
e
C
+C

S
SD

e
C

1
P
1
S

St
o
ry
D
if
fu
si
o
n

C
S

P
h
o
to
M
a
ke
r

SD
X
L

“wearing a chef's 
hat and apron”

Figure 8: Case one of supplementary qualitative comparison results.

similar dense vegetation in the bottom-right corner, while the remaining images consistently feature
a bent tree (mentioned in the prompt of image #5); in the Middle, all images are dominated by the
visual element of an oak tree (mentioned in the prompt of image #4).

G MORE QUALITATIVE RESULTS

As a supplement to Fig. 4, we provide more qualitative comparison results in Fig. 8 and Fig. 9.
Although without the story-wide context, the images generated by our method in a “one prompt per
scene” manner present better ID preservation while well scene matching.

H FURTHER MODEL ANALYSIS

H.1 DISCUSSION OF SCALABILITY

Although the SVD step in SDeC has a theoretical complexity of O(d3) (d is dimension of matrix),
it does not form a practical bottleneck during inference. In practice, SDeC incurs only negligible
overhead, as the generative model itself accounts for more than 90% of the total computation time.

18



Published as a conference paper at ICLR 2026

SD
e
C
+C

S
SD

e
C

1
P
1
S

St
o
ry
D
if
fu
si
o
n

C
S

P
h
o
to
M
a
ke
r

SD
X
L

“in a vintage kitchen” “reading a novel” “shopping at a 
market”

“dressed in a formal 
evening gown”

“having a picnic in 
a park”

“in a rose garden”

“A hyper-realistic digital painting of A woman with a slender figure, straight red hair, and freckles across the nose”

“visiting a museum”

Figure 9: Case two of supplementary qualitative comparison results.

To further improve scalability, particularly for extremely long prompts, several extensions merit
investigation in future work. First, approximate SVD techniques, such as Randomized SVD (Halko
et al., 2011) with O(d2 log k) complexity or the Nyström approximation (Williams & Seeger, 2001)
with O(dk2) (k is a small constant), could significantly reduce computational cost while preserving
the essential spectral structure. Second, a divide-and-conquer strategy, in which a long prompt
is partitioned into K sub-prompts and processed sequentially, would allow the overhead to grow
approximately linearly with K (about K × 0.61 seconds). These observations suggest that SDeC
remains scalable and practical even for large-scale or dynamically evolving prompting scenarios.

H.2 PARAMETER ANALYSIS

Our SDeC method involves three parameters, including weighting strength Ω in Eq. (8) and trade-off
parameter β and switching constant M in Eq. (6). In this part, we first specify the setting of these
hyperparameters for optimal performance, and then conduct a sensitivity analysis.

Guidelines for parameter setting In our SDeC method, the setting of hyperparameters for optimal
performance should follow the guidelines below:
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Figure 10: Parameter sensitivity analysis results of β ∈ [5, 25], Ω ∈ [0.5, 2.5], and M ∈ [0, 30]. The
DreamSim-F score is inverted to DreamSim-FV = 1-DreamSim-F, so higher values indicate better
performance, as with CLIP-T score.

(1) Parameter βM is associated with the "forward-and-backward" optimization. Practically, M should
exceed a threshold (20) so that the forward phase can capture as many scene-related directions within
the ID embedding as possible. Moreover, β should satisfy β ≫ 0, enabling maximal restoration
of ID-related information in the backward phase. This "forward-and-backward" optimization aims
to identify the latent ID-scene correlation space, independent of and generic with any specific
generative model. Consequently, the setting of β and M remains consistent across different generative
architectures.

(2) Parameter Ω is tied to the architecture of the underlying generative model, as it represents the
strength of de-contextualization and is therefore directly related to the generation process. Our exper-
iments indicate that for UNet-based models (e.g., SDXL, PlayGround, RealVisXL-V4.0, Juggernaut-
X-V10), Ω should be small (typically Ω = 1). In contrast, DiT-based models (e.g., SD3, Flux) require
a much larger value of Ω (typically Ω = 10).

Sensitivity analysis In Fig. 10, we provide the varying curves of DreamSim-F and CLIP-T scores
as the three parameters change. As shown in Fig. 10-Left, the DreamSim-FV and CLIP-T scores
remain near-steady when a wide range of [5, 20], indicating our method does not rely on the careful
selection of trade-off parameter β.

The results in Fig. 10-Middle show that Ω’s increase leads to a trade-off phenomenon between the
DreamSim-FV and CLIP-T score. This phenomenon is reasonable. In SDeC, to avoid semantics loss,
we enhance the robust subspace by imposing larger weights Ω on its corresponding eigen-directions
(see Eq. (8)). When the increase of Ω remains within a reasonable range, the native correlation
between ID and scene is reduced, improving both ID preservation and scene retention. Once it
exceeds a threshold (e.g., > 1), however, the generative model is prone to pay more attention to the
stronger ID components, leading to continued gains in ID preservation but convergence in scenes.

As for parameter M , Fig. 10-Right presents that DreamSim-FV curve progressively climbs and
reaches the top at M = 20, while ClIP-T curve is with only minor fluctuations. The results are
consistent with our expectations. In the forward-and-backward process, sufficient time in the forth
stage drives the ID prompt embedding closer to that of the scene, enabling the identification of
directions in ID prompt embedding’s eigen-space most sensitive to contextualization. As this process
acts only on ID, scene diversity remains unaffected.

H.3 SENSITIVITY TO THE ORDERING OF SCENE AND ID PROMPTS

In the evaluation experiments, the prompt is arranged naturally: the ID prompt precedes the scene
prompt. To investigate the sensitivity to the ID-scene prompt order, we conduct an additional
comparison where the scene and ID prompts are reversed. In this way, we can extend the original
SDXL and SDeC (rewritten as SDXL-o and SDeC-o) to variation SDXL-r and SDeC-r, respectively.

The comparison results reported in Tab. 5 indicate that the prompt ordering (ID-Scene vs. Scene-ID)
has a non-negligible impact on the metrics, particularly for the baseline model. We hypothesize
that tokens placed earlier in the prompt receive more conditioning weight in the cross-attention
mechanism, driving the observed sensitivity:
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Table 5: Effect of scene-ID prompt order.

Method DreamSim-F↓ CLIP-I↑ DreamSim-B↑ CLIP-T↑

SDXL-o 0.2778 0.8558 0.3861 0.8865
SDXL-r 0.2894 (+0.0116) 0.8507 0.3966 (+0.0105) 0.8899
SDeC-o 0.2589 0.8655 0.3675 0.8946
SDeC-r 0.2670 (+0.0081) 0.8609 0.3777 (+0.0102) 0.8935

“A leprechaun sharing a pint”

“A leprechaun trading stolen 
trinkets at a market”

“A leprechaun sharing a pint”

“A leprechaun trading stolen 
trinkets at a market”

Figure 11: SVD eigenvalues evolving dynamics relative to their original values during the "forward-
and-backward" optimization. Here, in the “SVD eigen-direction #,” a smaller value of # indicates a
larger eigenvalue for that direction.

1. Baseline (SDXL) behavior: When the prompt order is reversed (Scene-ID), the baseline
model shows worse ID consistency (higher DreamSim-F score) but better scene distinction (higher
DreamSim-B score). This suggests the scene tokens, when placed earlier, exert a stronger, negative
influence on the subject’s identity, while simultaneously making the scene more distinct.

2. SDeC behavior: When SDeC is applied, the negative effect on the ID from prompt reversing
is slightly reduced, which is consistent with our objective of suppressing scene-ID correlation.
Importantly, the positive effect on scene distinction is maintained, as SDeC leverages the original
scene prompt content.

H.4 ANALYSIS OF THE "FORWARD-AND-BACKWARD" OPTIMIZATION

In SDeC, the “forward-and-backward” optimization is central to identifying the latent scene–ID
correlation subspace within the ID prompt. To better understand this process, we visualize how the
SVD eigenvalues evolve relative to their original values during optimization. For clarity, we show an
example with five ID tokens, resulting in five corresponding SVD eigen-directions. We present the
visualization results in Fig. 11. There are three observations below.

First, the evolution of the SVD eigenvalue gap against the original value follows our expectation.
In the forward phase (step 0-20), the eigenvalue distinction curves gradually grow to pull the ID
embedding to the scene embedding. In the subsequent backward phase (step 20-100), despite some
vibration (e.g., the blue one), the curves globally converge to zero. This verifies the recovery of the
ID-associated component.

Second, in the final step, the eigenvalue gaps exhibit a clear divergence, which allows us to treat the
directions with larger gaps as the basis of the ID–scene shared subspace. Moreover, this divergence is
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Figure 12: Left: Incorporating SDeC with ControlNet under the control of pose map. Right:
Integrating SDeC with PhotoMaker, where a photo of Geoffrey Hinton serves as the reference.

correlated with the specific scene prompt. For example, in the top case, the gap is most pronounced
along eigen-direction 2 (red), whereas in the bottom case, the divergence appears along eigen-
directions 1 and 2. This also indicates that the “forward-and-backward” optimization imposes a
scene-specific de-contextualization.

Third, the eigen-directions with mid-range eigenvalues, such as eigen-directions 1 and 2, exhibit larger
final gap values and are thus more readily identified as the basis of the ID–scene shared subspace.
This behavior naturally emerges from the “forward-and-backward” optimization: compressing the
mid-eigenvalue directions simultaneously preserves the dominant ID-embedding information encoded
in the largest-eigenvalue directions while maintaining sufficient compression strength to meaningfully
influence the generation process.

I SUPPLEMENTAL EXPERIMENTS

I.1 INTEGRATING WITH OTHER GENERATIVE TASKS

SDeC reduces the ID shift by editing the ID prompt embedding, without modifying the generative
models. Consequently, it is compatible with different visual generation tasks. In this part, we
incorporate the proposed method with two typical models with different generative goals. One is
ControlNet (Zhang et al., 2023), which introduces controllable conditions (e.g., edge maps, pose maps,
or depth maps) to enable structured control over image generation. The other is PhotoMaker (Li et al.,
2024), which leverages an input reference image to preserve identity features, generating consistent
subject images across diverse scenarios. As shown in Fig. 12, our SDeC demonstrates excellent
compatibility and ID-preservation.

I.2 CONSISTENT STORY GENERATION WITH MULTIPLE SUBJECTS

In this part, we present the effect of SDeC as the ID prompt involves multiple subjects. Fig. 13
demonstrates a toy case involving an “elderly man” and a “cat”. It can be observed that these two
subjects are basically consistent, although some ID shift: The shorter cat fur in images #4, #9, and
#10; the absence of glasses in images #1, #7; the hat in image #8.

I.3 GENERALITY TO BASE GENERATIVE MODEL

Extensive experiments with the SDXL base model show that our SDeC enables semantically mean-
ingful editing. However, if its effectiveness were confined to only a subset of generative models, its
practical applicability would be greatly limited. To demonstrate its generality, we integrate SDeC
with four representative base models and compare performance before and after integration. Specif-
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Figure 13: Consistent story generation with multiple subjects. The results show that our SDeC can
generate images featuring multiple expected characters, with minor ID shift, for example, the hat
(image #8) and glasses (images #1, #7).

Table 6: Quantitative results obtained by combining SDeC with four UNet-based generative base
models (Top) and two MMDiT-based generative base models (Bottom).

Base-model type Method DreamSim-F↓ CLIP-I↑ DreamSim-B↑ CLIP-T↑

U
N

et

SDXL 0.2778 0.8558 0.3861 0.8865
SDXL+SDeC 0.2589 0.8655 0.3675 0.8946
PlayGround-v2.5 0.2567 0.8680 0.3688 0.8799
PlayGround-v2.5+SDeC 0.2272 0.8832 0.3470 0.8994
RealVisXL-V4.0 0.2616 0.8660 0.4075 0.9007
RealVisXL-V4.0+SDeC 0.2435 0.8665 0.3845 0.8942
Juggernaut-X-V10 0.2748 0.8572 0.4295 0.8974
Juggernaut-X-V10+SDeC 0.2369 0.8781 0.4011 0.9077

M
M

D
iT SD3 0.2875 0.8495 0.4236 0.8596

SD3+SDeC 0.2644 0.8612 0.4140 0.8629
Flux 0.2844 0.8516 0.4238 0.8632
Flux+SDeC 0.2653 0.8623 0.4167 0.8648

ically, in addition to SDXL, the other base models include PlayGround-v2.5-1024px-Aesthetic4,
RealVisXL-V4.05, and Juggernaut-X-V106.

From the comparison presented in Fig. 14, we draw two main observations. First, within the SDXL
group, SDeC substantially alters the subject in image #2, while making only minor adjustments to
the others, for example, consistently sharpening the cats’ chins. This is reasonable, as SDXL already
performs well in ID preservation for the remaining images. Second, in contrast, when the base models
exhibit evident identity divergence (see the other three groups), equipping them with SDeC leads to a
significant improvement in the quality of the generated images.

The base models above are based on the UNet (Ronneberger et al., 2015) architecture. To verify the
generality of our method, we further evaluate our approach using two generative models based on
MMDiT (Esser et al., 2024): SD37 and Flux8. As shown in Fig. 15, in the SD3 group, the model
equipped with our SDeC achieves substantial improvements in appearance consistency, including

4https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic
5https://huggingface.co/SG161222/RealVisXL_V4.0
6https://huggingface.co/RunDiffusion/Juggernaut-X-v10
7https://huggingface.co/stabilityai/stable-diffusion-3-medium
8https://huggingface.co/black-forest-labs/FLUX.1-dev
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Figure 14: Comparison of combining SDeC with the UNet-based generative models. From top to
bottom, there are results of SDXL group, PlayGround-v2.5-1024px-Aesthetic group, RealVisXL-
V4.0 group, and Juggernaut-X-V10 group, respectively.
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Figure 15: Comparison of combining SDeC with the MMDiT-based generative models. Top: Results
of SD3 group. Bottom: Results of Flux group.

clothing, hair color, posture, and wing features. In the Flux group, the original Flux model shows an
ID shift in gender, whereas incorporating our method significantly mitigates this issue.

For a comprehensive comparison, we list the quantitative results of the methods mentioned above in
Tab. 6. In each group, the base model equipped with SDeC achieves stronger ID-related performance
(DreamSim-F, CLIP-I) and comparable scenario-level results (DreamSim-B, CLIP-T) relative to the
original base models. These results confirm SDeC’s effectiveness and architectural independence.

J AN EMPIRICAL STUDY OF NANO BANANA’S ID-PRESERVATION

J.1 BUILDING BASELINE

As the beginning of our exploration, this baseline experiment generates 12 images using Nano
Banana9 under the setting formulated in the Problem Statement of Sec. 3. In practice, we start
a new session and sequentially input the 12 prompts into Nano Banana via its official interface in
dialogue mode. We set the ID prompt to “A dreamy illustration of a beautiful princess with a kind
smile”, and the scene prompts are generated using ChatGPT-5.010.

As shown in Fig. 16, the generated images exhibit excellent ID consistency, except for the hairstyle in
image #4 and the clothing in image #5. We further observe that the generation time increases steadily
from 8.5 seconds for the first image to 82.6 seconds for the last. This phenomenon suggests that Nano
Banana might leverage previously generated images as contextual information during subsequent
generation. If this speculation holds, Google’s method implicitly incorporates a reference image to

9https://aistudio.google.com/models/gemini-2-5-flash-image
10https://chatgpt.com/
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Figure 16: Results of baseline experiment where the images are arranged in a U-shape. All scenarios
share the same ID prompt, and the scene prompts are different, as in the setting of this paper.

enforce ID consistency, the same as the personalized T2I generation (see Sec.2 Related Work).
Accordingly, the strong ID preservation becomes interpretable. In Nano Banana, the developed image
editing technique (a feature also emphasized officially) is employed to integrate the subject from the
reference image with the target scene. The subjects in images #1, #2, #4, #6, #8, and #9 provide
compelling support: Their clothing and pose are mirrored, which exhibits clear signs of editing.

J.2 VALIDATING LEVERAGING PRIOR IMAGES AS CONTEXT

As presented above, our conclusion regarding reference images is drawn under the assumption that
contextual information is exploited in Nano Banana. To test this assumption, we selected scenario #1
and #4 from the baseline as the first and last ones, respectively, and inserted 10 intermediate scenarios
between them. Based on this, we conducted two perturbation experiments as follows. Of note, to
avoid interference between experiments, each experiment is conducted in a newly created session.

In the first experiment, we introduce substantial perturbations to the intermediate scenes by asking
ChatGPT-5.0 to produce prompts that are markedly different from the first scenario. The results in
Fig. 17 reveal significant differences between the first and last images (e.g., hairstyle, costume, and
headdress), suggesting that the Nano Banana model indeed accounts for contextual information.

In the second experiment, we perform minor perturbations: The intermediate scenarios adopt a
literary style similar to that of the first scenario, achieved by instructing ChatGPT-5.0 to replicate its
style literally. Meanwhile, the ID component remains aligned with the first, but is slightly varied by
substituting the subject with related terms (e.g., “woman” and “girl”). As shown in Fig. 18, compared
with the baseline, the subjects in the first and last images again exhibited notable differences (e.g.,
hair color, hair length, and costume style). Moreover, the last image and its neighbors displayed
higher facial similarity than the first. We further extend the number of scenarios to Nano Banana’s
maximum support (22). The results in Fig. 19 reveal that the differences between the first and last
images are further amplified, making it difficult to regard the presented subjects as the same person.

While the observed ID shifts under the two types of perturbations suggest Nano Banana adopts a
context strategy, another evidence arises from the side-by-side comparison of experimental results.
Specifically, compared with minor perturbations (Fig. 18 and Fig. 19), strong perturbations (Fig. 17)
result in smaller ID shifts. A reasonable explanation is that in the strong-perturbation case, the
constructed context exhibits much larger semantic differences. This enables the generation process of
image #12 to more easily converge attention on the most similar first scenario, thereby achieving ID-
preservation. In contrast, in the minor-perturbation case, the attention distribution remains relatively

26



Published as a conference paper at ICLR 2026

A dreamy illustration of 
A beautiful princess 

with a kind smile 
walking in a garden of 

enchanted roses
（11.5s）

A cinematic render of A 
lone astronaut drifting 
among colossal space 

debris near a shattered 
moon

（10.9s）

A neon digital painting 
of A cybernetic wolf 

prowling through rain-
soaked alleys of a 

megacity
（12.4s）

A hyper-detailed 
artwork of A massive 

starship docking inside 
a glowing orbital 

station
（18.8s）

A surreal sci-fi 
illustration of A child 
holding a holographic 

butterfly in a zero-
gravity chamber
（15.3s）

A futuristic concept art 
of A squad of android 
guardians marching 

across the dunes of a 
terraformed Mars

（23.9s）

A dreamy illustration of 
A beautiful princess 

with a kind smile 
wearing a shimmering 

gown at a royal ball
（82.1s）

A dystopian digital 
painting of A crowd of 
masked citizens staring 
at a colossal hologram 

in the sky
（48.1s）

A neon-saturated 
artwork of A humanoid 
robot DJ performing in 
a nightclub of synthetic 

beings
（53.7s）

A cinematic concept art 
of A rogue pilot 

escaping through 
asteroid fields in a 

rusted space cruiser
（62.4s）

A holographic-style 
illustration of A 

scientist opening a 
shimmering portal 

inside a quantum lab
（28.8s）

A dark sci-fi painting of 
A forgotten AI core 
pulsing beneath an 

abandoned 
underground facility

（24.9s）

1

12

65432

7891011

A dreamy illustration of 
A beautiful princess 

with a kind smile 
walking in a garden of 

enchanted roses
（11.5s）

A cinematic render of A 
lone astronaut drifting 
among colossal space 

debris near a shattered 
moon

（10.9s）

A neon digital painting 
of A cybernetic wolf 

prowling through rain-
soaked alleys of a 

megacity
（12.4s）

A hyper-detailed 
artwork of A massive 

starship docking inside 
a glowing orbital 

station
（18.8s）

A surreal sci-fi 
illustration of A child 
holding a holographic 

butterfly in a zero-
gravity chamber
（15.3s）

A futuristic concept art 
of A squad of android 
guardians marching 

across the dunes of a 
terraformed Mars

（23.9s）

A dreamy illustration of 
A beautiful princess 

with a kind smile 
wearing a shimmering 

gown at a royal ball
（82.1s）

A dystopian digital 
painting of A crowd of 
masked citizens staring 
at a colossal hologram 

in the sky
（48.1s）

A neon-saturated 
artwork of A humanoid 
robot DJ performing in 
a nightclub of synthetic 

beings
（53.7s）

A cinematic concept art 
of A rogue pilot 

escaping through 
asteroid fields in a 

rusted space cruiser
（62.4s）

A holographic-style 
illustration of A 

scientist opening a 
shimmering portal 

inside a quantum lab
（28.8s）

A dark sci-fi painting of 
A forgotten AI core 
pulsing beneath an 

abandoned 
underground facility

（24.9s）

1

12

65432

7891011

Figure 17: Results of experiment with major perturbation where the images are arranged in a U-shape.
The intermediate scenarios (#2∼#11) significantly differ from the first one.
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Figure 18: Experiment with minor perturbation where the images are arranged in a U-shape. In the
intermediate scenarios (#2∼#11), the scene prompts generated by ChatGPT-5.0 follow a literary style
similar to that of the first, while the ID prompts remain consistent with the first, differing only in the
substitution of the subject with a related concept.

flat. As a result of blending the semantics of multiple scenarios, the final generated image displays a
much more pronounced ID shift.

J.3 COMPARING WITH OUR METHOD IN THE WAY OF ID-PRESERVATION

In summary, the ID consistency observed in Nano Banana can be attributed to the implicit use of
reference images, where previously generated results serve as contextual input. This allows image
editing techniques to enforce high-quality ID consistency. In contrast, our method avoids such strong
assumptions: The “one prompt per scene” feature provides an unconstrained usage condition and
requires neither intensive computation nor additional data overhead.
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Figure 19: Extended experiment with minor perturbations, under the same setting as Fig. 18, with the
number of images increased to the maximum continuous generation times of Nano Banana.

Methodologically, Nano Banana falls within the category of personalized T2I generation. It typically
relies on a reference dataset, taken as context, to model ID invariance, aligning with the principles
of transfer learning. In contrast, SDeC takes a conceptually distinct path by pursuing a novel
prompt embedding editing paradigm, derived from a native generative perspective on ID shift: Scene
contextualization in each individual image.

J.4 COMPARING WITH OUR METHOD UNDER SCENE WITH STRONG VISUAL SHIFTS

The de-contextualization studied in this paper focuses on the general effects of a scene on identity (e.g.,
changes in clothing or posture due to a scene description), which covers normal usage scenarios. If the
scene is an extreme case involving strong visual shifts (e.g., intense color washes that fundamentally
alter the subject’s appearance, far beyond normal shadow changes), would our method still remain
effective?

To address this question, we present the outputs of our SDeC combined with the SDXL base model
(denoted by SDXL+SDeC), where the scene prompt includes both normal- and strong-visual shifts.
For comparison, we also include results generated by Nano Banana.

From Fig. 20, we observe that the newly released commercial model Nano Banana and SDXL+SDeC
fail to capture the direction of the light source, which is crucial for determining shadow formation.
This indicates that their ability to interpret and realize the strong visual shifts specified in the scene
prompt remains limited.
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Figure 20: Comparison results under scene with strong visual shifts.

K LIMITATION AND FUTURE WORK

Despite improving ID consistency while maintaining scene diversity, SDeC, as a prompt-embedding
editing approach, cannot fundamentally resolve ID shift. First, Theorem 1 proves that the attention
mechanism is the central origin of ID shift, even when ID and scene prompt embeddings occupy
disjoint subspaces. Second, in line with Theorem 2, SDeC essentially performs an indirect form of
contextualization control by reducing the overlapping energy between ID and scene embeddings.

Therefore, designing attention modules tailored to preserve ID represents a promising direction for
future work. In this paper, however, our theoretical contributions, such as Theorem 1 and Corollary 1,
are intended to reveal the mechanistic link between scene contextualization and ID shift. Their
practical contribution to attention design remains limited. This limitation arises from idealized
assumptions (e.g., sharp subspace partitioning and linearity) and the neglect of real data geometry
and attention dynamics. These factors render the precise construction of P∩ numerically unstable
and difficult to apply in high-dimensional, sample-limited settings. Addressing these challenges will
be a central focus for future work.

Additionally, a key motivation of this work is the lack of theoretical justification for ID shift in the
T2I literature. We provide the first theoretical interpretation of ID shift through the lens of scene
contextualization, and offer a practical solution by addressing the underlying correlation. Nonetheless,
this represents only the beginning of a deeper exploration into the fundamental mathematical "balance"
between identity and scene. In this paper, we observe two pieces of evidence suggesting the existence
of a possible balance. One is the trade-off visualized in Fig. 10 (Middle). The other one is the
disentanglement-coherence trade-off reflected in Corollary 2. Developing a systematic theoretical
framework for this balance constitutes an important and promising direction for future research.

At present, addressing these extreme visual alterations remains a significant challenge for all current
generative models. The results in Fig. 20 highlight the limitations of our method in this regard.
Consequently, explicitly incorporating the constraints imposed by extreme visual alterations into the
prompt-editing process constitutes an interesting direction for future research.
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